Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Genet. mol. res. (Online) ; 6(4): 730-742, 2007. ilus, graf
Article in English | LILACS | ID: lil-520029

ABSTRACT

Transcriptional control is an essential regulatory mechanism employed by bacteria. Much about transcriptional regulation remains to be discovered, even for the most widely studied bacterium, Escherichia coli. In the present study, we made a genome-wide low-order partial correlation analysis of E. coli microarray data with the purpose of recovering regulatory interactions from transcriptome data. As a result, we produced whole genome transcription factor regulation and co-regulation graphs using the predicted interactions, and we demonstrated how they can be used to investigate regulation and biological function. We concluded that partial correlation analysis can be employed as a method to predict putative regulatory interactions from expression data, as a complementary approach to transcription factor binding site tools and other tools designed to detect co-regulated genes.


Subject(s)
Escherichia coli/genetics , Genome, Bacterial/genetics , Oligonucleotide Array Sequence Analysis , Databases, Genetic , Transcription Factors/metabolism , Gene Expression Regulation, Bacterial , Transcription, Genetic
2.
Genet. mol. res. (Online) ; 3(1): 117-133, Mar. 2004.
Article in English | LILACS | ID: lil-417579

ABSTRACT

The complete genome sequence of the free-living bacterium Chromobacterium violaceum has been determined by a consortium of laboratories in Brazil. Almost 500 open reading frames (ORFs) coding for transport-related membrane proteins were identified in C. violaceum, which represents 11 of all genes found. The main class of transporter proteins is the primary active transporters (212 ORFs), followed by electrochemical potential-driven transporters (154 ORFs) and channels/pores (62 ORFs). Other classes (61 ORFs) include group translocators, transport electron carriers, accessory factors, and incompletely characterized systems. Therefore, all major categories of transport-related membrane proteins currently recognized in the Transport Protein Database (http://tcdb.ucsd.edu/tcdb) are present in C. violaceum. The complex apparatus of transporters of C. violaceum is certainly an important factor that makes this bacterium a dominant microorganism in a variety of ecosystems in tropical and subtropical regions. From a biotechnological point of view, the most important finding is the transporters of heavy metals, which could lead to the exploitation of C. violaceum for bioremediation


Subject(s)
Chromobacterium/genetics , Open Reading Frames/genetics , Membrane Transport Proteins/genetics , Chromobacterium/metabolism , Membrane Transport Proteins/classification , Biological Transport/genetics
3.
Genet. mol. res. (Online) ; 3(1): 102-116, Mar. 2004.
Article in English | LILACS | ID: lil-417580

ABSTRACT

Chromobacterium violaceum is a Gram-negative bacterium, abundant in a variety of ecosystems in tropical and subtropical regions, including the water and borders of the Negro River, a major component of the Amazon Basin. As a free-living microorganism, C. violaceum is exposed to a series of variable conditions, such as different sources and abundance of nutrients, changes in temperature and pH, toxic compounds and UV rays. These variations, and the wide range of environments, require great adaptability and strong protective systems. The complete genome sequencing of this bacterium has revealed an enormous number and variety of ORFs associated with alternative pathways for energy generation, transport-related proteins, signal transduction, cell motility, secretion, and secondary metabolism. Additionally, the limited availability of iron in most environments can be overcome by iron-chelating compounds, iron-storage proteins, and by several proteins related to iron metabolism in the C. violaceum genome. Osmotically inducible proteins, transmembrane water-channel, and other membrane porins may be regulating the movement of water and maintaining the cell turgor, activities which play an important role in the adaptation to variations in osmotic pressure. Several proteins related to tolerance against antimicrobial compounds, heavy metals, temperature, acid and UV light stresses, others that promote survival under starvation conditions, and enzymes capable of detoxifying reactive oxygen species were also detected in C. violaceum. All these features together help explain its remarkable competitiveness and ability to survive under different types of environmental stress


Subject(s)
Adaptation, Physiological/physiology , Chromobacterium/physiology , Ecosystem , Oxidative Stress/physiology , Adaptation, Physiological/genetics , Chromobacterium/genetics , Chromobacterium/metabolism , Oxidative Stress/genetics , Open Reading Frames/genetics , Open Reading Frames/physiology , Hydrogen-Ion Concentration , Temperature , Ultraviolet Rays
4.
Genet. mol. res. (Online) ; 3(1): 53-63, Mar. 2004.
Article in English | LILACS | ID: lil-417585

ABSTRACT

In the finishing phase of the Chromobacterium violaceum genome project, the shotgun sequences were assembled into 57 contigs that were then organized into 19 scaffolds, using the information from shotgun and cosmid clones. Among the 38 ends resulting from the 19 scaffolds, 10 ended with sequences corresponding to rRNA genes (seven ended with the 5S rRNA gene and three ended with the 16S rRNA gene). The 28 non-ribosomal ends were extended using the PCR-assisted contig extension (PACE) methodology, which immediately closed 15 real gaps. We then applied PACE to the 16S rRNA gene containing ends, resulting in eight different sequences that were correctly assembled within the C. violaceum genome by combinatory PCR strategy, with primers derived from the non-repetitive genomic region flanking the 16S and 5S rRNA gene. An oriented combinatory PCR was used to correctly position the two versions (copy A and copy B, which differ by the presence or absence of a 100-bp insert); it revealed six copies corresponding to copy A, and two to copy B. We estimate that the use of PACE, followed by combinatory PCR, accelerated the finishing phase of the C. violaceum genome project by at least 40 per cent


Subject(s)
Chromobacterium/genetics , Genome, Bacterial , RNA, Ribosomal/genetics , Polymerase Chain Reaction/methods , Contig Mapping/methods
5.
Genet. mol. res. (Online) ; 3(1): 26-52, Mar. 2004.
Article in English | LILACS | ID: lil-417586

ABSTRACT

A new tool called System for Automated Bacterial Integrated Annotation--SABIA (SABIA being a very well-known bird in Brazil) was developed for the assembly and annotation of bacterial genomes. This system performs automatic tasks of assembly analysis, ORFs identification/analysis, and extragenic region analyses. Genome assembly and contig automatic annotation data are also available in the same working environment. The system integrates several public domains and newly developed software programs capable of dealing with several types of databases, and it is portable to other operational systems. These programs interact with most of the well-known biological database/softwares, such as Glimmer, Genemark, the BLAST family programs, InterPro, COG, Kegg, PSORT, GO, tRNAScan and RBSFinder, and can also be used to identify metabolic pathways


Subject(s)
Computational Biology/methods , Chromobacterium/genetics , Databases, Genetic , Genome, Bacterial , Software , Brazil , Computational Biology/instrumentation
6.
Genet. mol. res. (Online) ; 3(1): 18-25, Mar. 2004.
Article in English | LILACS | ID: lil-417587

ABSTRACT

Scientific research plays a fundamental role in the health and development of any society, since all technological advances depend ultimately on scientific discovery and the generation of wealth is intricately dependent on technological advance. Due to their importance, science and technology generally occupy important places in the hierarchical structure of developed societies, and they receive considerable public and private investment. Publicly funded science is almost entirely devoted to discovery, and it is administered and structured in a very similar way throughout the world. Particularly in the biological sciences, this structure, which is very much centered on the individual scientist and his own hypothesis-based investigations, may not be the best suited for either discovery in the context of complex biological systems, or for the efficient advancement of fundamental knowledge into practical utility. The adoption of other organizational paradigms, which permit a more coordinated and interactive research structure, may provide important opportunities to accelerate the scientific process and further enhance its relevance and contribution to society. The key alternative is a structure that incorporates larger organizational units to tackle larger and more complex problems. One example of such a unit is the research network. Brazil has utilized such networks to great effect in genome sequencing projects, demonstrating their relevance to the Brazilian research community and opening the possibility of their wider utility in the future


Subject(s)
Humans , Biological Science Disciplines , Genome , Research/organization & administration , Information Services/organization & administration , Brazil
SELECTION OF CITATIONS
SEARCH DETAIL